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We study the near-threshold behavior of electrohydrodynamic convection (EHC) in planarly aligned
nematic liquid crystals in the (low-frequency) conduction regime. The investigations are based on a
rigorous and systematic weakly nonlinear analysis of the standard hydrodynamic equations leading to a
reduced description in terms of order-parameter equations. The typical experimental stability regimes in
control parameter and wave-number space are identified for normal rolls near threshold. In particular,
the decisive role of mean-flow effects in triggering the typical secondary zigzag instability leading to ob-
lique rolls is emphasized. Subsequently, a set of coupled amplitude equations is derived directly from the
basic equations that includes the mean-flow effects and higher-order gradient terms important at least in
EHC. Simulations of the amplitude equations point to the possible existence of more than one attractor
beyond the zigzag destabilization line, which might explain the sometimes conflicting experimental re-
sults. The scenario of “weak turbulence” (sometimes called “defect turbulence”) is well accounted for by

the theory.

PACS number(s): 61.30.—v, 47.20.—k, 47.65.+a

I. INTRODUCTION

The appearance of spatial patterns in fluid systems,
driven away from equilibrium, is a common feature in na-
ture [1,2]. The famous canonical example is the
Rayleigh-Bénard convection (RBC) in simple fluids,
about which many detailed and impressive investigations
have been carried out (see, e.g., [3,4]). More recently the
electrohydrodynamic instability in a thin layer of a
nematic liquid crystal subject to an electric ac field (EHC)
has attracted considerable and still growing interest. If
the electric field exceeds a certain threshold value, one
will observe typical convection-roll patterns roughly as in
RBC, and further similarities regarding secondary-
bifurcation scenarios are evident (general aspects of EHC
are discussed, e.g., in Refs. [5-15]).

On the other hand, there are important differences
making EHC interesting in itself. It is presumably the
simplest example of an anisotropic pattern forming sys-
tem, because by means of an appropriate surface treat-
ment a preferred orientation (e.g., planar as in this paper)
of the director field i, defining the axis of the orientation-
al order in the nematic liquid crystal, can easily be im-
posed. The electrically driven destabilization mechanism
is very effective and rather thin specimens (typical layer
thickness from 10 to 100 pum, lateral dimensions of the
order of centimeters) with accompanying short relaxation
times (below 1 sec) can be used. Because of the large as-
pect ratio regular patterns of several hundreds or even
thousands of rolls are observable and the influence of la-
teral boundaries is expected to be small, so that the (al-
most exclusively applied) idealization of a continuous sys-
tem with infinite extent in two dimensions is well found-
ed. Experimentalists enjoy also the possibility of chang-
ing easily several control parameters, such as the frequen-
cy of the applied electric field (besides the amplitude) or
additional magnetic fields.
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For theorists there are further motivations rendering
EHC attractive in spite of the challenge presented by the
complexity of the system. Already at the onset of the
convection instability one has to understand the oc-
currence of various structures with different space-time
symmetries [16,11,14]. Typical are secondary bifurca-
tions near threshold (e 0.1, where € is the usual nondi-
mensional control parameter that is chosen zero at on-
set). One observes roll patches with alternating direc-
tions (zigzag) or sometimes undulations along the roll
axis (see, e.g., [17,18]) and transitions to complex spa-
tiotemporal behavior characterized by a continuous gen-
eration and annihilation of defects (dislocations) [19-22],
which has been described as weak (defect mediated) tur-
bulence [1,23] or fluctuating Williams rolls in the context
of EHC [24]. The rich scenario of patterns near thresh-
old makes perturbational calculations promising for
EHC, and one can hope to get a better understanding of
bifurcation mechanisms observed in RBC normally far
above threshold. Anyway, a full Galerkin-type analysis
[3] with a subsequent construction of a phase diffusion
equation [25] goes to the limit of today’s computer facili-
ties for EHC.

The primary goal of this paper is to elucidate the evi-
dently generic features around the secondary zigzag de-
stabilization line, rigorously on the basis of the hydro-
dynamic equations without flexoelectric effect, as they are
used almost exclusively for the description of EHC [11].
We refer always to the standard substance MBBA (N-p-
methoxybenzylidene-p-butylaniline), for which most ex-
periments have been made. It is one of the few materials
with negative dielectric anisotropy, where all material pa-
rameters are known. Like most of the experimental work
(or at least the part regarding well-controlled measure-
ments) our investigations refer to the conduction regime
for frequencies f below the cutoff frequency f, [26,11]
(several hundred Hz typically), where the slope of the
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threshold curve with respect to frequency would diverge.
A rough estimate for f,. that works quite well for MBBA
is given by 27 f,79=2 [11], where 7y denotes the charge
relaxation time depending on the conductivity, which can
be controlled to some extent by doping.

The perturbation analysis for EHC follows a standard
calculational scheme which is more or less well estab-
lished for continuous extended pattern forming systems
near threshold [1,27-29]. The starting point is the hy-
drodynamic equations, which in the case of EHC couple
the electric potential, the velocity, and the director field
[5-7,30,31]. Linear perturbation analysis of the quies-
cent state (spatially uniform director, constant electric
field, no velocities in the fluid) yields the threshold volt-
age and the critical modes. An intuitive physical picture
of the basic (Carr-Helfrich-Orsay [32,33,26]) mechanism
behind the pattern-forming instability has evolved. Sub-
sequent refinements [34,16,11,14,35,36] led to consider-
able agreement with experiments in many cases.

To describe the system slightly above threshold in the
framework of the weakly nonlinear analysis one can use a
wave-packet ansatz (involving a Fourier transformation
with respect to the horizontal spatial coordinates) sup-
ported by the modes which grow exponentially at thresh-
old or which are only weakly damped (the ‘active
modes” in the notation of [29]). One ends up with order-
parameter (OP) equations [27,28] for the expansion
coefficients in Fourier space (Fourier amplitudes), by
which periodic roll solutions and their stability boun-
daries can be investigated.

The procedure, which is conceptually clear though
tedious because of the complicated structure of the un-
derlying hydrodynamic equations, has been worked out
and tested in parallel for EHC and the somewhat simpler
situation of RBC [37,38] in nematics. For EHC we al-
ways find a forward bifurcation and the typical stability
boundaries [20,39], very near threshold involving local
compression and dilation of the roll pattern (the general-
ized Eckhaus process [40,41]), are identified. More im-
portantly, our calculations show very clearly a secondary
bifurcation for small but finite €< 0.05, where normal-
roll patterns lose their stability via a long-wavelength
transverse destabilizing mode along the roll axis (called
zigzag instability in RBC [3,42]) in agreement with the
experimental situation. Moreover, the analysis shows
also that the distortion of rolls excites a horizontal
“mean-flow” (also called ‘“‘mean-drift” or ‘large-scale
flow” [1,43,44]) mode with vertical vorticity, which even
enforces the distortion.

The reduced dynamical description of EHC by OP
equations in Fourier space serves as a convenient starting
point for the derivation of the standard amplitude (en-
velope or Ginzburg-Landau) equations, when
transformed to position space by expanding in powers of
the Fourier amplitude and its gradients. At leading order
in € the resulting amplitude equations [11,41] differ some-
what from the well-known Newell-Whitehead-Segel equa-
tions [45,46] for isotropic systems. They were very useful
for a universal description of possible patterns near
threshold [41,47,11,14] and were also successfully applied
to describe the dynamics of defects [48,49,36]. However,
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the simplest amplitude equation is not sufficient to ex-
plain the secondary bifurcation to a zigzag pattern and
the weak turbulence mentioned before. This results also
from the fact that the amplitude equation in leading or-
der possesses a Lyapunov potential, which has only sim-
ple attractors. It will become evident that a set of cou-
pled amplitude equations, which include mean-flow
modes, is necessary for an accurate description of the ex-
perimental situation in EHC near threshold.

The consideration of large-scale flow effects in nemat-
ics originally started with the somewhat artificial (but
fashionable) stress- and torque-free boundary conditions
[50-52] following the concepts presented in [53]. In that
context pattern formation also means spontaneously bro-
ken Galilean invariance and the corresponding Goldstone
modes have to be treated on the same footing as the
modes which trigger the appearance of rolls at threshold.
A coupled system of amplitude equations results quite
naturally and the coupling of the roll amplitude to the
mean flow turns out to be very strong. This leads to an
immediate amplification of long-wavelength undulatory
fluctuations even at threshold, rendering normal rolls un-
stable there in contrast to the common experimental situ-
ation. The analysis was refined on a purely phenomeno-
logical basis and by adjusting the undetermined parame-
ters, some features observed in the experiments could be
rediscovered [54-56].

For realistic rigid boundary conditions the derivation
of coupled amplitude equations for EHC in nematics
starting from a systematic treatment of the basic hydro-
dynamic equations is conceptually more difficult. The
clue is that one ends up with a nonsmooth gradient ex-
pansion after simply transforming the OP equation from
Fourier to position space. An additional “degree of free-
dom” has to be introduced that absorbs the singular
behavior. We think that our approach, which can be un-
derstood as a systematic combination of existing concepts
and ideas in the literature [27,29,57,58,53], is a useful
contribution also to the general analysis of pattern form-
ing systems.

Since the wave-packet analysis in Fourier space con-
tains as a special case the simple periodic normal-roll pat-
terns and their stability behavior, it is guaranteed by our
procedure that long-wavelength stability boundaries cal-
culated from the amplitude equation coincide with those
from rigorous calculations. By numerical simulations we
were also able to investigate the attractors beyond the
stability boundaries. We find that the final state, which is
approached after the transients have died out, depends to
some extent on the initial conditions. We observe, e.g.,
undulated and zigzag patterns for the same external pa-
rameters, possibly in some relation to metastable states
obtained from the amplitude equation near the so-called
Lifshitz point [41,36]. That might explain why one has
sometimes conflicting experimental results. The tenden-
cy towards the spontaneous generation of defects with in-
creasing control parameter € came out very clearly.

The paper is organized in the following manner. In or-
der to ensure the uniformity of the presentation we
sketch the well-known underlying equations in Sec. II. In
Sec. III the weakly nonlinear analysis is described, and
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the typical bifurcation scenarios are presented. In Sec.
IV we explain in some detail our method to derive the
coupled amplitude equations. In Sec. V a short discus-
sion of possible stability boundaries in the framework of
amplitude equations is added. In Sec. VI we discuss the
results of our numerical simulations of the coupled am-
plitude equations. After the conclusion in Sec. VII, the
Appendixes contain some technical details and tables of
the coefficients of the amplitude equations.

II. THE BASIC EQUATIONS

In this section we provide briefly the basic equations
for the description of the electrohydrodynamic instability
in nematic liquid crystals [5-7,30,31,59,60,11]. We
refer to the usual situation of a planarly oriented nematic
layer in the x-y plane sandwiched between conducting
plates. The underlying equations couple the electric field
E, the director i, and the fluid velocity v.

Conservation of charge for a weakly conducting and
uniaxial material reads as follows:

div{o B+o,(f-B)a} +—‘%pe=O ,

p.=¢eudivie E+e, (R-E)A} , (1)

d 9

a - a VY

p. denotes the charge density, €,€, (0,0 ) are the com-
ponents of the dielectric (conductivity) tensor parallel
and perpendicular to the director, respectively. The elec-
tric field can be separated into two parts: The driving ac
field in z direction with frequency @ and the induced field,
which can be expressed in terms of a potential ¢:

E=%Ecos(wt)—grad¢ . ()

With de Gennes’s molecular field h [5] the balance of
torques can be written as

€, =€ TE, O,=0 70

F=AXh=0, h=%f:—ylzv—yzA><ﬁ. 3)
n

The field h contains the variational derivative of the
orientational free energy F [61]:

F=1k (divR|)*+ Lk, (f-curlf)* + 1k 33 (A X curlii )
—lege,(R-E )V — Luoy, (R-H)? (4)

describing the elasticity against splay (k;), twist (k,,),
and bend (k;3;) deformations of the director field ni. Be-
sides an electric contribution, F also contains a term that
couples to an applied magnetic field H(x, =x,—X,, the
anisotropy of the magnetic susceptibility tensor y). The
fluid motion leads to viscous torques (with the rotational
viscosities ¥, and ¥,) depending on the rate of change
N=d1i/dr+L(@i X curlv) of the director moving with the
fluid particles and the hydrodynamic strain tensor
A;;=+(dv;/3x;+0dv; /0x;). Because the three com-
ponents of Eq. (3) are linearly dependent, we have to sin-
gle out the projections on a plane locally perpendicular to
fi. An appropriate local coordinate system for our
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geometry is spanned by the vectors:
n, ZXn0, AX(zZXn). (5)

The last of our basic equations is the momentum balance
(generalized Navier-Stokes equation for an anisotropic
system):

Pom % =f—gradp +divT . 6)

p.. denotes the mass density, f =p E the electric volume
force, and p the pressure. We treat the nematic as an in-
compressible fluid, i.e., divv=0 with the standard stress
tensor

JdF
lez—z Tnk’j'i‘ 2 alnk Akmnmninj +a2n,~Nj
k k,i k,m
Fosn;Ni+a,4;+ 3 (asnng Ay +agnng Ay;)
k

@)

containing the viscosity coefficients ;. According to the
relations

YiTa3—a; Y=azta, ag—as=azta,, (8)

[5,62] the number of independent viscosity coefficients is
reduced to five.

A convenient way to satisfy the incompressibility con-
dition is introducing two velocity potentials f and g [63]
and expressing v as

v=curlcurlzf +curlzg=58f +¢€g ,

8 _ 9
dy’ 9x’

9)

€=

Application of the operators § and € to the Navier-Stokes
equation eliminates the pressure p and two equations for
f and g result.

The basic equations have to be supplemented by
boundary conditions. We suppose that the velocity van-
ishes at the confining plates (z=2+d /2, d is the sample
thickness) and that the director orientation is held fixed
there. This is expressed by the so-called rigid boundary
conditions

fi(+d /2)=(1,0,0) ,
b(+d /2)=f(+d /2)=3,f(+d /2)=g(+d /2)=0 .

In the explicit calculations the equations will be
transformed into a dimensionless form by expressing
length in terms of d /m, time in terms of ayd?/k,m?, etc.
(for details see Appendix A). We introduce, as an analog
to the Rayleigh number in thermal convection, the con-
trol parameter R, which is proportional to the rms value
of the applied voltage 0.5E3 /d*.

III. WEAKLY NONLINEAR ANALYSIS

For a brief schematic description of the weakly non-
linear analysis it is useful to introduce the deviations
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V=(¢’l—nx’ny’nz’fag) (11)

from the homogeneous solution n,=1,
¢=n,=n,=f=g=0, which becomes unstable above
threshold. The following symbolic notation for the basic
equations of Sec. II will be used:

LV+NL(VIV)+FNL{(VIVIV)+ - - -
=[$0+BI<V)+$2(V|V)]%¥~. (12)

The symbols £ and B; represent matrix differential
operators of the indicated order in V. The components of
the vector operators N,,N3, . . . are quadratic, cubic, etc.
with respect to the components of V. The explicit form
of Eq. (12) is clear from Sec. II, and for our purpose it is
not necessary to present the lengthy expressions in detail.
All our calculations have been checked with the help of
symbolically working systems (MACSYMA, MATHEMATI-
CA).

A. Linear analysis

In order to determine the threshold R, and the critical
wave vector q, one has to investigate the linearized prob-
lem

L(93,,3,,9,;R)V=2=543,,9,,3 )_81 (13)

x'Yys¥zy 0x’y7zat‘

This has been done in considerable detail during the past
years [11,14,35,64,65] and we shall recapitulate very
briefly the main results. The operator .L (see Appendix
B) contains the external electric ac field, therefore the
solution has the general form V=¢MV (Floquet’s
theorem), where V has the periodicity of the external
field. Equation (13) is then rewritten as

108,,8,,8,;RIV=L(3,,3,,0,;R IV —By(3,,3,,9,) 5

=ABy(8y,9,,3, )V . (14)

As usual one idealizes the convection cell with its large
aspect ratio as infinitely extended in the x-y plane, so that
the modal solutions have the general form

Vix,y,z,t)=V(q,z,t)e'%™, q=(q,p), x=(x,y), (15)

where the periodic function V; can be expanded in a
Fourier series

Volq,z,0)=3 v,,(q,z)e™" (16)

The z dependence is treated with a Galerkin method; one
expands the velocity potential f in terms of Chan-
drasekhar functions [66], the other quantities in terms of
trigonometric functions, so that the boundary conditions
are satisfied [37,38].

If we insert the ansatz (15) and (16) into Eq. (14) the
linear equation will be transformed to an infinite-
dimensional algebraic eigenvalue problem for the expan-
sion coefficients of V(q,z,¢) (with respect to time and z
dependence), which has to be truncated. In this work we
are interested in not too thin nematic layers and not too
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high frequencies (conduction regime [5,11]). The ratio of
the director relaxation time and the charge relaxation
time (i.e., the parameter Q in Appendix A) is large in that
case and it is then possible to take into account only the
leading terms with respect to the Fourier expansion in
time [11]. The z dependence is well described by only few
modes (<5). In order to perform projections on the
space spanned by the eigenmodes of Eq. (14) one also
needs the solutions of the adjoint eigenvalue problem,
which are analogously found by a double expansion with
respect to time and z dependence.

Let 0(q,R ) be the eigenvalue A with the maximum real
part at given q and control parameter R. The condition
of vanishing real part of o determines the neutral surface
R,(q). We have never observed a Hopf bifurcation, i.e.,
the imaginary parts of o always vanish on the neutral
surface. In order to justify our approximation scheme,
we have checked carefully that the inclusion of higher
Fourier modes in time leaves the bifurcation type un-
changed. The minimum of R(q) with respect to q yields
the critical wave vector q.=(q.,p.) and the threshold
R.=R(q.). Instead of R the dimensionless control pa-
rameter e=(R —R_)/R, is often used in the following.

The form of the neutral surface is influenced by the
material parameters. For low frequency of the external
electrical field and not too small anisotropy of the con-
ductivity tensor (depending also on the other parameters
[11] there are two degenerate minima at (q.,%tp.), i.e.,
one has oblique rolls at threshold. More frequent is the
case of normal rolls, where the neutral surface has a sin-
gle minimum at (q,,0), which we exclusively address in
this work.

B. Order-parameter equation

The basic idea of the weakly nonlinear analysis
[27,28,1,29] (for a recent more detailed presentation see,
e.g., [37,38]) is to approximate the solution slightly above
threshold by a wave packet of the eigenmodes of Eq. (14)
[see also (15) and (16)]:

V2V1=fD+dq A(q,t)Vo(q,z,t)e 9 +c.c. , (17

where A(q,t) reduces the order parameter (amplitude),
which vanishes at threshold. The integration domain D
is a small area centered at q, determined by the condition
o(q,R)=0, which need not be specified in detail. The
amplitude A(q,?) is determined from Eq. (12) by a sys-
tematic expansion of V in terms of the small parameter 4
in the form V=V ;+V,+V,;+ ---. The second-order
solution V, proportional to 4?2 is explicitly calculated as
the solution of the corresponding inhomogeneous linear
system derived from Eq. (12):

LV,+N,(V,|[V)=0. (18)

The solution V, contains separate contributions with
wave vectors near +2q, and q=0. The time dependence
is again described by a Fourier series and the z depen-
dence by a Galerkin ansatz. Proceeding to third order
the equations are closed by projecting V3 onto the sub-
space spanned by the linear modes of Eq. (14). The pro-
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cedure leads directly to the order-parameter equations in
Fourier space

al(q)%A(q,t)=az(q)A(q,t)

+ fDd%fDd%aa(q’QU‘h)
X A(qy,t)A(qyt)
X A(q—q;—qpt), (19

where D=D_, UD_ with D, being small areas around
*q,.. The general structure of the equation is immediate-

J

a,(qp)
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ly clear. The term cubic in 4 on the right-hand side of
(19) has contributions from N;(V;,V,,V,) and from
N,(V,V,)+N,(V,,V,) [see (12)]. The coefficients a;(q)
(i=1,2,3) are complicated functions of the material pa-
rameters and the external fields, which become accessible
only numerically.

To start with we are interested in roll solutions period-
ic in space characterized by the wave vector qy, i.e.,

A,(q)=c,8(q—qg)+c,*d(q+qq) - (20)

The double integral on the right-hand side of (19) then
collapses and the amplitude coefficient ¢, is given by

le,(qo) 2= —

Without loss of generality, ¢, can be chosen real. It is
also obvious that |c,|? is proportional to
[R —Ry(qg)]1/Ry(qq), the reduced distance from the neu-
tral surface, which serves as our expansion parameter.
We found always forward bifurcation with |c,(q)[*>0 in
the interior of the neutral surface.

C. Stability analysis

It is well known that the periodic roll solutions V=V,
determined by the ansatz (17) together with Egs. (20) and
(21) are not stable in the whole q region bounded by the
neutral curve R,(q). The stability analysis of V, (see,
e.g., [37] is performed by introducing a linear perturba-
tion 8V, corresponding to a perturbation 8 4(q,?) of the
amplitude A, [Eq. (20)]:

8A(q,1)=[c,(q,8)8(q—qo—8)+c,(q,s)8(q+qo—s)Je™ .
(22)

The wave vector s allows for a modulation of the original
pattern. The corresponding second-order perturbation
8V, constructed from Eq. (18) depends linearly on ¢; and
¢, and contains modes with wave vectors +2q,+s and s.
At cubic order [see Eq. (12)] the equations are closed by
projection onto the linear modes with wave vectors q,ts.
The two resulting linear equations for ¢, and c, deter-
mine the corresponding growth rate o ,,;i,(dg,s)=Re(A).
When the maximum of o, With respect to s crosses
zero from below, a stability boundary of a roll solution
with wave vector q, (and control parameter R) can be
identified. We here consider exclusively long-wavelength
modulations with |s|—O0.

In Fig. 1 a typical stability diagram resulting from our
calculations is shown. For €—0 one has Eckhaus-like
stability boundaries [40] that restrict normal rolls to a re-
gion around band center, outside of which the roll pat-
tern becomes unstable against longitudinal modulations
parallel to q [i.e., with s=(s,,0)]. Note that for g =g,
the most dangerous modes are strictly speaking of the
skewed-varicose (SV) type [67] with s=(s,,s,), but be-

a3(—q0,90,90) T a3(qo, —90,90) +a3(qp, 40> — Qo) ’

—

cause of s, /s, <<1 the destabilization is hardly distin-
guishable from a pure Eckhaus process. More specific
and very common for convective instabilities in nematics
[19,21,37,38,68,69] is the zigzag (ZZ) instability corre-
sponding to a transverse long-wavelength modulation
along the roll axis [i.e., with s=(0,s,)]. In EHC it does
not appear directly at threshold as in isotropic fluids [63],
but is shifted slightly above threshold (to a value e=¢,, in
reduced units) and leads to a limitation of the stability re-
gime from above.

The shape of the region where normal rolls are stable is
very similar to that known from experiments (see Fig. 1
in [19] or in [21], respectively), where beyond the ZZ line
oblique rolls appear. Also the value of €,, at the onset of
the ZZ instability fits the experiments quite well. A
quantitative comparison is difficult because the precise lo-
cation of the zigzag instability depends remarkably
strong on the material parameters and the frequency.
For the strong variation of €,, at band center we give

0.10 F - ,V,,,‘l

" ,,’: A

0.00 = -
1.20 1.40 1.60 1.80

FIG. 1. Stability diagram [e=(V2?—V?)/V?] vs wave num-
ber g for parameters indicated in the figure (see also Appendix
A). The solid line denotes the neutral curve, the dashed lines
the stability boundaries (E, Eckhaus; SV, skewed varicose; ZZ,
zigzag).
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3.0 (* T T ij

(O]

FIG. 2. Onset of the zigzag instability (e =¢,,) at band center
(g=4q.) as a function of the frequency of the applied voltage in
units of the charge relaxation time 7o=gy€,/(0y0,) (0,=0.6,
otherwise the parameter is the same as in Fig. 1).

05 -

0.50 0.60 0.70 0.80 0.90 1.00

FIG. 3. Onset of the zigzag instability for ¢ =g, as a function
of the conductivity anisotropy o, (otherwise the parameter is
the same as in Fig. 1).

Hy

FIG. 4. Onset of the zigzag instability for ¢ =g, as a function
of an applied magnetic field in the x direction (o, =0.6, other-
wise the parameter is the same as in Fig. 1).
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some examples in Figs. 2 and 3. Especially interesting is
the fact that the onset is decreasing if a horizontal (stabil-
izing) magnetic field is applied (see Fig. 4). That is
confirmed in experiments [18,70]. One observes that the
distance between the ZZ line and the threshold curve
stays nearly constant with increasing magnetic field (see
Fig. 6.4 in [12]), corresponding to a decrease of €,,. In
the following sections additional results will be given,
while we investigate the scenarios beyond the ZZ line in
the framework of the amplitude equation formalism.

IV. FROM ORDER PARAMETER
TO AMPLITUDE EQUATIONS

In Sec. III we have investigated periodic roll solutions
of the order-parameter equations (19) in Fourier space.
The description of more complicated patterns, which are
observed typically in EHC experiments slightly above
threshold, is preferably done in position space. For that
purpose one introduces a modulation amplitude A(x)
defined as

Ax)= [ dqA@e" " (23)
+

By the definition of the integration domain D (17) the
quantity 8¢ =|q—q,| is small in comparison to g, and
correspondingly the amplitude A (x) varies on a scale of
the order 8g ~!. Spatial derivatives of 4 (x) are given by

(—id,)™(—id,)" A4 (x)
= [dalg—g.)"(p—p )" A(@)e" %" . 4

The explicit construction of an envelope equation is in
principle done by a transcription of the order-parameter
equation (19) into position space. The various coefficients
a; have to be expanded into Taylor series around q, and
translated to spatial derivatives of A(x) [see Eq. (24)].
This works well for the coefficients a; and a, of the linear
part, but does not for a; in the cubic part of Eq. (19).
While the leading term yields correctly the common
| 4|2 A4 contribution of the envelope equation, the direct
attempt to produce higher derivatives in the cubic term
fails because a; has obviously nonanalytic contributions.
They are identified as divergencies, if the corresponding
derivatives are performed numerically.

By closer inspection and comparison with the simpler
case of RBC in isotropic fluids [57,63,43] it is possible to
trace back the origin of that nonanalyticity to the
second-order terms V,(q) with q=0 [see Eq. (18)]. It will
become clear in the following that the nonanalyticity is
intimately tied to the velocity fields, in particular to a
contribution characterized by a nonvanishing spatial
average across the convection cell (in z direction). This is
the reason why these contributions are called mean-flow
terms. They need a special treatment, which will be
demonstrated in the following.

A. Calculation of the mean-flow part

The starting point for the calculation of the mean-flow
contributions is the inhomogeneous system (18) determin-
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ing V, with small modulation wave vector s in the form
L(s)V,(s)+T(s)=0. (25)

The inhomogeneity J(s) derives from the quadratic non-
linearities N,(V,V,) [see Eq. (18)] by pairwise superposi-
tion of contributions from the wave packets V; [see (17)]
with nearly opposite wave vectors, resulting in slow vari-
ations in position space.

As mentioned before the Fourier expansion in time is
restricted to the lowest order, which will be sufficient for
not too thin cells [11]. Because the long-wavelength
modes V,(s) are strongly damped solutions of the eigen-
value problem Eq. (14), explicit derivatives with respect
to time are neglected in an adiabatic approximation. In
the moment both simplifications seem to crucial, when
focusing on the derivation of amplitude equations. The
approximations can be circumvented in the context of the
order-parameter approach (see Sec. III C, or for more de-
tails, see [37]) and by comparing the corresponding stabil-
ity boundaries at most very small quantitative deviations
were found.

The complete linear operator .L [Eq. (13)] in position
space is shown explicitly in Appendix B. Transformation
with respect to the horizontal (x,y) coordinates into
Fourier (s) space yields the operator .L(s) [see Eq. (25)].
If only the leading powers in s, and s, are kept, Eq. (25)
for V,(s) with the components (¢,n,,n,,f,g) reads as
follows:

—Qo di¢=I,=0(1), (26)

éReasxRehb)-(%Rea +k; 02 —H?2)n,

+ilky—kyy)s,d,n,+ éa3sxa§f+ia3syazg

=1, =0(sy,s7), (27

x°y

—i(ky—kq, )syaznz+(k2283—Hf)ny=Iny=0(sy) ,

—1R(s}+s})e,07Re(4)
—Hlaglsi+s))—(astagsi1asf

— 18,8 83(a3+a6)g=1f=0(s2 s2), (29

x y>z x°y
—%sxsy(a3+a(,)6§f
—H(aytag)s) tay(s?+s7)]0%g
—7 — 3
=1,=0(s,s,,s;) . (30)
The order of magnitude of the components of
J(s)=W4,1,,1,,I;1,) [see Eq. (25)] with respect to
y z
Sx,S, has been indicated. A general presentation of the
rather lengthy expressions in J(s) seems superfluous.
One has, for example, a term such as (3, =9, NvV)v
contributing to I, [originating from the a, part of the
stress tensor in Eq. (6)], which is well known to trigger
the mean flow effects in isotropic fluids [43,44].
It is not difficult to see that the solution vector V,(s) of
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Eqgs. (26)—-(30) is in general not smooth in the limit s—0,
except that the quantities 1,,1, were zero. Therefore we
construct V,(s) as a linear combination of two contribu-
tions. At first we solve Egs. (26)-(30) for In,,:I"y:O’

from which we get the main nonanalytic contribution. A

complementary analytic part of V, is obtained when only

I, and I, are kept. It contributes directly to the cubic
z y

terms of the amplitude equation and needs no further ex-
planation.

The nonanalytic behavior can be extracted explicitly by
direct calculation of ¢ [Eq. (26)], f, and g [Egs. (29) and
(30)] in form of multiple z integrals. The details of that
calculation can be found in Appendix C. Both velocity
potentials are found to be not smooth if |s|=0 is ap-
proached. However, the physical relevant quantities are
not f and g, but the resulting velocities, obtained by the
application of the operators € and § [see Eq. (9)]. Conse-
quently, we have to isolate the nonsingular part of the ve-
locities (see again the fairly lengthy calculations in Ap-
pendix C). At first one finds that only the horizontal
components of the velocity v, namely v,,v,, cause prob-
lems. The main result is then that the complete nonana-
lytic part can be deduced from a velocity field with verti-
cal vorticity and a simple z dependence, which can be ob-
tained from the corresponding velocity potential
g,(s,z)=B(s)(z?—m?*/4)/2, where B(s) fulfills the equa-
tion

ﬁ%[(a3+a6)sy2+a4(s3+sy2)]B

24 /2 z v % "
== [ a7 e [Fdztn . G
The singular velocity potential g (s,z) can be seen to re-
sult from (30) with a modified right-hand side and f=0.
Note that it is not sufficient just to take the spatial aver-
age of the original inhomogeneity I, of (30) as proposed
tentatively in Ref. [43] for Rayleigh-Bénard convection.
The nonanalytical velocities pertaining to Eq. (31) induce
via the viscous coupling [Egs. (27) and (28)] correspond-
ing terms in the director field A.

Let us for convenience repeat the main steps and ideas
of our procedure: There exists a suitable expression I;
[the right-hand side of Eq. (31); the superscript s denotes
“singular”], which has to be used to rewrite the right-
hand side of Egq. (30) in the form

o =I;+1}=(I,—1I3)+1I;. Consequently, the solution of
Egs. (26)-(30) is a superposition of an analytic part re-
sulting from 1, =Ig1 and the nonanalytic one with I, =1, gz.
We have explicitly demonstrated how I; can be con-
structed in the leading orders in s,,s,. The procedure
can be continued to arbitrary order in Sx>Sys if one con-
siders systematically higher order terms in J and in the
linear operator .L (see Appendix B). The calculations are
cumbersome in detail, but can be tested at each stage by
comparison with the results from Sec. III. In the forth-
coming sections it will become clear that the isolation of
nonanalytic parts of the OP equations is a necessary first
step for the construction of coupled amplitude equations.
Also, the question of the uniqueness of the approach and
the reasoning by which the expansion with respect to
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SxsSy has been truncated in the order indicated will be ad-

dressed in the following sections.

B. The coupled amplitude equations for EHC

In Sec. IVA we have isolated the nonanalytic part
B(s) of the velocity potential g, which is also responsible
for certain nonanalyticities in the director field fi. If one
continues the order-parameter expansion up to the third
order and keeps the nonanalytic terms separate, one ar-
rives at two coupled integral equations for the amplitudes
A(q) and B(s):

alﬂ—%il:azfi(q)
+ [dq' [dq'a; 4(q) 4(q") A(q—q'—q")
+ [dsa,B(s)A(q—s), (32)
b,B(s)= [dqb, A(q) A(s—q) . (33)

The q integration is confined to the regions D, and |s| is
J

(1+i1d, +7,92 +7302)3, 4
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near zero. Equation (33) has been obtained by use of the
explicit expression for I, in Eq. (31). The coefficients a;
and b; are of course functions of the wave vectors. If one
is interested in periodic stationary roll solutions with only
one q mode involved, one recovers back exactly Eq. (21)
for the amplitude A4(q) because B(s) vanishes rigorously
in that case. Even the full Eq. (19) can be recovered if
B(s) is inserted in Eq. (32).

The advantage of the present formulation is that by
construction all coefficients can now be expanded in
powers of (¢ —gq.), (p —p,), and s,,s,. Equations (32) and
(33) are transformed back into position space by means of
the definition (23) for the modulation amplitude A(x)
and a corresponding one for B(x,y )= B(x) defined by

B(x)= [dsB(s)e’™* . (34)

In order to get the amplitude equation in the usual
form we have rescaled time in terms of a characteristic
time T, and the amplitude A4 in terms of v/ 4, (see Ap-
pendix D). The result is a quite complicated looking sys-
tem of two coupled amplitude equations:

=e(1—ie;d, —e,3% —e;0} +ie,d} +iesd, 0} +eqd; +e,0292 +egd}) A
+(r 32 +r,32+iryd} +iry,0} +rsdt +red332+r;0,) A —|A1*4—ia,| 41’3, 4 —ia, 473, A*
—a;| A2 4 —a, A%} A* —as(3, A A* —a4|d, A1*A—a,| A|°0} A —az A’ A* —ay(3,4)°4*
—a |3, A|*A +ia, | A|?9,0} 4 +ia,, 473,92 A* +ia,3(3,3,A4)(3,A)A* +ia,(3,0,4)A43,4*
+ia s A(d,4)9,0, A*+ias(d] A)D, A)A*+ia,;(33A4) A3, A*+ia ;g A3, A)d} A*+iay|d, 4|3, 4

+iay(d,4)%3, A*—is; Ad,B —s,(8, A)(3,B)—s53(3, 4)(8,B)—s5,43,3,B ,

(b,0%+b,02)B=q,0,9,| A|*+¢,0,(i43,3, A*+c.c.)+q;0,(i4*d: A +c.c.)+q,3,(i4*d] A +c.c.)

+g5(A*3,3} A +c.c.)+q4(d, 4*d} A +c.c.) .

Representative numerical values of the coefficients for
different experimental parameters can be found in the
Appendix D.

The derivation of the amplitude equations (35) and (36)
is based on a kind of systematic expansion up to the cubic
order in the convection amplitude 4, which behaves near
threshold as V'e. The fact that we have kept more
derivative terms than is usually done needs justification.
Indeed, if lengths are scaled like 1/V € (in our anisotropic
system the same scaling for the x and y coordinates
would apply) and time like 1/€, one obtains at leading or-
der in € the conventional amplitude equation for aniso-
tropic systems [41]. The quantities /7,1 r, are then
identified with the parallel and perpendicular coherence
lengths & and &, [11]; the terms ~ag; in the cubic part of
(35) are not included as higher-order contributions in €.
Also the mean-flow amplitude B plays no role at that or-
der. The resulting stability boundaries are of the general-
ized Eckhaus type [41].

The additional higher-order terms are of various na-
ture. First, one has corrections to the time-derivative

terms on the left-hand side of Eq. (35) (coefficients 7;),
which are of rather minor importance. Second, one has
in the linear operator on the right-hand side of (35)
corrections up to fourth order in the derivatives
(coefficients e; and r;, i=3,...,7) corresponding to
modifications of the parabolically shaped neutral curve
away from band center. Apart from the fact that such
corrections can easily be calculated, we found that the
description of the pattern beyond the zigzag destabiliza-
tion (Fig. 1) could be improved to some extent. Further-
more derivative terms in the cubic terms of (35) are in-
cluded, which will be motivated below in more detail. Of
particular importance is the coupling to the mean-flow
amplitude B produced by the last four terms in (35),
where B is determined from (36). It is obvious that the
inversion of the modified Laplacian on the left-hand side
of Eq. (36) leads to nonanalytic long-range velocity fields.
After all, if one feels certain about the importance of the
nonlinear derivative terms, the inclusion of the higher-
order terms in the linear operator seems natural for con-
sistency reasons.



4518

In the following section it will be shown that the ampli-
tude equations in the form presented in Eqgs. (35) and (36)
lead to a satisfactory description of stability regimes of
normal rolls with respect to long-wavelength distur-
bances when one compares with the results of the con-
ventional analysis (see Sec. III). More specifically, we
had to keep all higher-order derivatives such as 9, 812, (see
the coefficients a,y, . . . , @), which are necessary for the
calculation of the correct slope of the zigzag destabiliza-
tion line at band center. Note that their importance can-
not be assessed by simple power counting arguments with
respect to €. In Sec. VI we will describe simulations of
Eqgs. (35) and (36) with the conclusion that the resulting
pattern are well correlated with the experimental situa-
tion.

The general structure of the amplitude equations and
of occurring derivative terms is governed by simple sym-
metry arguments [71]. If the amplitude equation were to
be constructed in the oblique-roll regime, even more
derivative terms would appear [50]. The coupling be-
tween the amplitudes 4,B and the structure of the addi-
tional B equation can also be compared with the corre-
sponding one in the RBC case [63,43]. One has addition-
al terms in our case because of the anisotropy of the sys-
tem. Typically higher-order derivatives in the cubic
terms are not calculated in the literature, despite their
importance for reliable calculations of stability regimes.
In any case such terms are of the same order as mean-
flow contributions and should appear also for the follow-
ing consistency reasons. The equation for B contains by
construction the singular contributions of the horizontal
velocity fields. Their separation from the analytic parts is
not unique. One could, e.g., add polynomials in 9,,9,
multiplied by (b,3% +b,33) applied to | 42| on the right-
hand side of (36), leading to modified coefficients. The
corresponding nonsingular contributions for B can be
directly calculated and inserted into (35) leading to
modified derivative terms in the cubic order, by which
the changes in B equation are compensated.

In conclusion we have derived an amplitude equation
systematically up to cubic order in 4 without additional
assumptions with respect to length and time scale. The
number of derivative terms kept has been judged by com-
parison with rigorous stability calculations and by con-
sistency requirements. In that respect the coupled ampli-
tude equations serve as a kind of normal form description
[72-74] of the stability regimes of EHC near threshold.

V. STABILITY ANALYSIS OF ROLL SOLUTIONS

In this section we shall examine the stability of roll
solutions A,=Fe'?* (the amplitude F and further details
of the calculations are presented in Appendix E) of the
coupled envelope equations (35) and (36) against long-
wavelength perturbations of the form

i(sxx+syy) —t'(sxx+syy)

8A4=e%(c,e +cje Je" . (37)

The quantity Q =g —q, denotes the distance from band
center. The growth rate o can easily be determined from
a 2X2 eigenvalue problem, where 8 4 is inserted into (35)
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and (36) by scanning numerically the Sx,8, for fixed Q and
€. Near Q=0 one can describe the resulting stability
boundaries in more detail. We express the modulation
wave vectors s, and s, in polar coordinates

5, =Sco0sO, s5,=S8sinO (38)

and keep only the leading terms in S. Then the reduced
growth rate s(©)=0(0)/S? will be a function of © only
and can be written as

sin*©
1+v sin?©

sin’©

s(©@)=a .
1+v sin?©

+csin’?0+d . (39)

The quantities @, b, ¢, d, and v are easily calculated from
the coefficients of coupled amplitude equations (35) and
(36). It is evident that with the use of Eq. (39) the stabili-
ty analysis becomes quite transparent and in particular
material-parameter studies of EHC are considerably
simplified because only the behavior of the five
coefficients @, b, ¢, d, and v in Eq. (39) has to be observed.

The various stability boundaries €=¢,,(Q) are solu-
tions of a quadratic equation in € (see, e.g., Appendix E)
obtained from the condition that the global maximum of
5(©) becomes for the first time positive at some angle
©=06,. One finds first of all a solution corresponding to
the Eckhaus instability (sin©=0), which starts quadrati-
cally in Q from band center (¢=0,Q=0). The corre-
sponding stability boundary €y,,=€p,(Q) up to order
O(Q?) is given by

€e(Q)=3r,0%[1—Q(3ry /ry—2a,—3e,)] . (40)

In comparison to the neutral curve
[€neute(@)=r;Q*+ - - - ] the curvature of eg, at Q=0 is
larger by the well-known factor 3.

Besides the Eckhaus instability one gets in our case a
second solution €,,(Q) (zigzag instability), which
confines the stability regime from above (see Fig. 1). It is
obtained from Eq. (39), when the coefficients @,b,¢,d are
expanded up to order O(Q) (for details see Appendix E).
One sees that almost all coefficients of Egs. (35) and (36)
are indeed required for a calculation of the reduced
growth rate s(©) and its slope with respect to Q at band
center (see Appendix E). The nature of the upper desta-
bilization line can easily be tested with the help of the fol-
lowing criteria.

One would have an Eckhaus-type instability (©,=0,
pure modulations along the x direction), if

d>0, b+c=0. (41)
For the zigzag instability (©,= /2, modulations along
the roll axis) one needs

a+b+c+d>0, 2+v)@a+ve)+b+c=0. (42)
If the conditions

a—vb

(14v)?< 1 (43)
a Ttve

a+ve <0,

are fulfilled, one would have a skewed-varicose instability
(0=6,=06gy =7/2) with
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1 b 172
sinOgy=—— ‘;TZE (44)

We have tested that the stability boundaries in Fig. 1
agree almost quantitatively with the predictions of the
amplitude equations (71]. In particular, the zigzag line
and its slope at Q =0 is reproduced exactly, as it should
be according to our calculational method.

In order to demonstrate in more detail the interplay of
the various contributions to the generation of the zigzag
instability, e.g., at band center, we give the explicit ex-
pression for the value of €,,(Q=0) [see Eq. (E5)] in
terms of the coefficients of Egs. (35) and (36):

€,7,(0=0)= ik . 45)
2z $144

b,

esta;—ag—2

First of all, it is significant that the sign of the quantity
5144, which is produced by the mean-flow effects, is nega-
tive (note that b, is always positive). In RBC this com-
bination is positive with a stabilizing effect, such that
with decreasing Prandtl numbers the ZZ instability be-
comes less important, which for large Prandtl numbers
renders rolls with wave vectors g =g, unstable (see, e.g.,
the analytical calculations in [75]). Although we cannot
offer a specific mechanism, the situation is apparently
generically different in nematics because the same feature
is also observed in the RBC for nematics [37,38]. A
closer inspection of Eq. (45) shows that in addition to the
mean flow the higher derivative terms are of equal impor-
tance. From the Tables I and II in Appendix D
(0,=0.8,wry=0.5,H,=0), e.g., we have the following
coefficients: e3;=0.92,a,=—1.8,a3=—0.51, and
2(s194/b,)=—1.09. It is clear that any phenomenologi-
cal model, where the higher-order derivative terms are
typically left out (as in [55,56]), cannot be trusted to pro-
duce a correct description of the bifurcation scenarios in
EHC.

With the help of the numerically determined
coefficients the secondary bifurcation turns out to be al-
ways of the ZZ type. Recent experiments [22] indicate
another instability, which is attributed to the skewed-
varicose type and which for high enough driving frequen-
cies precede the zigzag instability. It is not difficult to
model such scenarios by adjusting the coefficients
@,b,c,d in Eq. (39), as was already recognized in [56],
where a set of phenomenological phase diffusion equa-
tions leads directly to s(©) in Eq. (39) with v =0. How-
ever, within the range of material parameters acceptable
for MBBA a set of coefficients necessary for a secondary
bifurcation of the SV-type could not be obtained.

The amplitude equation can finally be used to describe
the situation beyond the secondary bifurcation. As to be
expected one has stable oblique-roll solutions of Egs. (35)
and (36) of the form A,=Fe?*") The amplitude
F(Q,P) can easily be calculated and the stability analysis
can be performed without difficulty analogous to the
normal-roll case (P =0) discussed before. Above the zig-
zag instability, where stable normal-roll solutions do not
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exist, stable oblique rolls (nonzero P) are still possible.
One has a degeneracy between P (zig, zag). In Fig. 5 we
compare the stability regime at Q=0 (i.e., g=g¢q,) as a
function of transverse wave vector P calculated from the
coupled envelope equations (35) and (36) and from the
“rigorous” order-parameter equation in Sec. III. The
inner boundary of the stability regime obtained from the
rigorous analysis (diamonds) changes only slightly with
€(P=~0.2,0.085€50.4 [71]). The corresponding tilt an-
gle of the oblique rolls (=P /q,~0.15) is well correlat-
ed with the maximal tilt angle 6,, =8° found in some ex-
periments [19]. With respect to the amplitude equation
there are considerable quantitative deviations for nonzero
P. Clearly higher-order derivative terms with respect to y
were to be included, which makes it clear that the effort
necessary for a quantitative assessment of the secondary
bifurcations becomes comparable with a direct solution
of the underlying hydrodynamic equations, e.g., by
Galerkin methods.

It should be mentioned that the occurrence of stable
oblique-roll states beyond the secondary zigzag destabili-
zation is also found in RBC of nematics in the presence of
a horizontal magnetic field [37]. In that case even a terti-
ary short-wavelength instability is predicted connecting
the equivalent zig and zag states. A possible final saturat-
ed state could be a bimodal structure already observed in
RBC experiments [76]. Bimodal structures (also called
grid pattern) have also been observed in EHC (see, e.g.,
[24,10]), and consequently we searched for short-
wavelength instabilities in EHC in the framework of OP
equations (32) and (33). For commonly used material pa-
rameters we could not find such tertiary destabilizations
and it cannot be excluded that in EHC they are not con-
tained in the cubic order. That applies also to further
long-wavelength destabilizations of oblique rolls [19,21],
which could not be detected.
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FIG. 5. Stability boundaries regimes for slightly oblique rolls
at band center [q=(q,,P)] calculated from the amplitude equa-
tions (35) and (36) (dashed lines) and the more general OP equa-
tion (19) (diamonds) in Fourier space (the parameter is the same
as in Fig. 1, the solid line denotes the neutral curve).
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VI. NUMERICAL SIMULATIONS

We will now describe some representative results of nu-
merical simulations of the coupled amplitude equations
(35) and (36). A pseudospectral [fast Fourier transform
(FFT)] code in combination with an Adams-Bashforth
iteration scheme was used. This method is known to be
very stable, though not very precise. We were mainly in-
terested in the possible structures beyond the ZZ destabil-
ization line. For concreteness we have confined ourselves
to the parameter set used to calculate the stability dia-
gram displayed in Fig. 1, where the zigzag instability sets
in for €~0.05 at band center. It turns out that already
simulations in one dimension [disregarding all derivatives
with respect to x in (35) and (36)], where one concentrates
on the transverse variations responsible for zigzag, pro-
vide a rough impression of complex spatiotemporal pat-
tern. Then the amplitude equation explores the stability
regimes in the y direction in Fig. 5. In one dimension we
have adopted the usual scaling of length, time, and ampli-
tude (see [51]):

'=A/Ve, y'=yVe/Vr, t'=te. (46)

The FFT code yields the Fourier coefficients A,(¢') of
the amplitude A(y',t')=F, A, (t")explinApy’) (Ap
=2w/L, =0.01, —256 <n <256). If one starts from ini-
tial conditions 43S 1 (normal rolls) with the other
Fourier coefficients random and small ( $107?) the time
development falls into several different cases. For
€ =0.05 the stable normal-role start represents the attrac-
tor and the final state is given exactly by 4,=1, 4, =0
for n#0. Beyond the zigzag line, but not too far from it,
one has very long transients. Typically a sideband struc-
ture is approached as shown in Fig. 6, where the modulus
of the A, is plotted as function of n. One observes a cen-
tral peak and two large side peaks corresponding to a zig
and zag contribution. The position of these peaks corre-
sponds to p values in the stable regime in Fig. 5. The
mode distribution is almost steady in Fourier space after
the transients have died out and the fine details depend
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FIG. 6. Typical snapshot of the modulus of the Fourier
coefficients A, (see text) for the 1D simulation at band center
for €e=0.1 after the initial transients have decayed (the parame-
ter is the same as in Fig. 1).
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FIG. 7. The 1D Fourier coefficients for e=0.2 (compare Fig.
6).

on the initially chosen randomness in the Fourier
coefficients. The stable pure zig or zag configurations ap-
pear to have only a small basin of attraction. If € is in-
creased further, the central peak vanishes and only the
two side peaks survive (see Fig. 7). One has then a situa-
tion with pronounced zigs and zags separated by small
transition regions. An alternative way to present the re-
sults is to display the local wave number p(y’), i.e., the
derivative of the phase of 4'(y’,¢’). In Fig. 8 a snapshot
of p(y) is plotted for €=0.1 as function of y (i.e., in units
of the cell thickness d according to y =y'\/r,/V'ed /).
One finds regular undulations interrupted by rare spikes,
which correspond to phase slips at the zeros of 4'(y’,¢’).
The picture changes dramatically for €e=0.2 as shown in
Fig. 9. Now the state contains extended parts with al-
most constant p(y’)==p (pure zig or zag) interrupted by
numerous phase slips. From our numerical work we had
the impression that there is a kind of phase transition be-
tween €=0.1 and 0.2 where the number of defects in-
creases sharply.

We also performed two-dimensional simulations. The
system now has more possibilities to smooth out defects.
The usual way to visualize the pattern is to plot the real
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FIG. 8. The local wave number p(y) for €=0.1. The length
is given in units of the cell thickness d (otherwise the parameter
is the same as in Fig. 1).
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FIG. 9. The local wave number p(y) for e=0.2 (see Fig. 8).

part of exp(ig.x)A(x,y,t). A typical picture for €=0.1
is shown in Fig. 10. The physical length scale can readily
be read off from the separation of the rolls, which corre-
sponds to 2d /q, (d is the cell thickness). If one starts
from random initial conditions, one observes in most
cases an undulated pattern with only a few dislocation
defects in close analogy to the one-dimensional case.
With respect to their dynamical behavior the defects
move slowly on the background of the almost periodic
pattern. Alternatively it was also possible to produce a
stable zigzag pattern as often observed in experiments,
see Fig. 11, if one starts more or less from a sequence of
zigs and zags. We were not able to predict systematical-
ly, if from the initial conditions a more undulated or a
more zigzag pattern would arise. Clearly there is no
clear-cut separation between undulations and zigzag in
some analogy to the possible pattern at the so-called
Lifshitz point [36]. For €=0.2, on the other hand, the
pattern always saturated in a state such as that shown in
Fig. 12. One observes alternating zigs and zags with
more violent dynamics and defects. The basic mecha-
nism behind the typical continuous generation and an-
nihilation of defects (“defect turbulence”) can easily be

FIG. 10. Snapshot of a 2D simulation pattern (see text) for
€=0.1 (the parameters are the same as in Fig. 1) starting from
random initial conditions.
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FIG. 11. Snapshot of a stable zigzag pattern (see text) for
€=0.1 (the parameter is the same as in Fig. 1).

understood. It results from an advection of the roll pat-
tern by the mean flow, which amplifies small undulations.
Because the boundary conditions counteract the bending
of rolls, the stress is released by straightening the rolls
and dislocations are left behind. The situation might cor-
respond to the experimentally observed tertiary bifurca-
tions characterized by fairly large defect densities origi-
nating from a destabilization of the undulated or zigzag
pattern not far above the ZZ line [19,21]. Obviously such
bifurcations are not accessible from a stability analysis of
strictly periodic roll solutions as described in Sec. V.

By carefully changing the resolution in space and time
we did our best be exclude the possibility that our results
are numerical artifacts. In any case we found that the re-
sults are very stable running the computer long times
without blowup. Obviously only the Fourier modes in
the central part of the wave-vector band participate in
the long-time behavior (see Figs. 6 and 7). The fact that
no short-wavelength modes were produced indicates that
the reduced description by the amplitude equations is
consistent. Therefore coexistence of several basins of at-
traction (see Figs. 10 and 11) and the increased average
number of defects with increasing € seems quite certain.

In this paper no attempt was made to investigate the

FIG. 12. Snapshot of a 2D simulation pattern for €e=0.2 (the
parameter is the same as in Fig. 1).
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possible scenarios in great detail and to map more ex-
haustively the solution manifold of the coupled amplitude
equations (35) and (36). The main reason is that at first
the appropriate mathematical tools for the characteriza-
tion of complex spatiotemporal behavior have to be
developed and tested, work which is just at the beginning
[77,78].

VII. CONCLUSION

The main goal of this paper was to present the most
general description of EHC near threshold in the frame-
work of a systematic expansion up to cubic order in the
convection-roll amplitudes on the basis of the hydro-
dynamic equations commonly used [11]. At first we ar-
rive at order-parameter equations in Fourier space well
suited to investigate possible patterns and their stability
near threshold. The secondary zigzag instabilities ob-
served typically in nematics near threshold are born out
at least semiquantitatively. The reliability of this ap-
proach has also been confirmed recently, when the very
rich pattern scenario for RBC in nematics [37] could be
reproduced by the much more involved full Galerkin
analysis [79].

The central issue of our work concerns the rigorous
and consistent derivation of coupled envelope (or ampli-
tude) equations in position space including mean-flow
effects, which are necessary for the understanding of the
bifurcation scenario in EHC. In order to recover the ¢
dependence of the order parameter and its stability satis-
factory in position space, one has in addition to include
spatial derivative terms up to fairly high order in the am-
plitude equation. Because mean-flow effects and higher-
order gradient terms are of equal importance determining
the secondary stability boundaries [see, e.g., Eq. (55)], a
description of EHC by amplitude equations without cal-
culating the coefficients cannot lead to deeper insight.

By numerical simulations we found the occurrence of
defect turbulence slightly beyond the secondary zigzag
bifurcation. Without reliable mathematical tools we are
not sure if the fairly sudden appearance of numerous de-
fects with increasing € can be interpreted as a kind of
phase transition, as described in a similar context with
traveling waves in EHC [80].

In line with our primary interest we have not presented
in this work a detailed parameter study of EHC in nemat-
ics contrasted by experiments, but we were satisfied by
the identification of the typical experimental scenario for
not too high frequencies in the conduction regime. De-
tails of more exhaustive investigations [65] will be
presented in a separate paper more addressed to the spe-
cialists. There the flexoelectric effect [81,14,82,83] has
been included and a large frequency range (including the
dielectric regime) is covered. No substantial deviations in
the low-frequency range covered by this paper are ob-
served. We never found a secondary bifurcation of the
skew-varicose type, as reported in recent experiments
[22] for higher frequencies (but still below the cutoff fre-
quency). We are convinced that in this range, where in
contrast to theoretical predictions traveling waves are
also observed [84,80], the basic equations need improve-
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ment [85]. Also a recently proposed new “longitudinal
mode” [19] could not be identified. Actually systematic
experiments are still missing. Probably much insight
would be gained by a controlled variation of the electric
conductivity or the dielectric tensor, keeping track of
possible accompanying changes of other material param-
eters (elastic constants, viscosities, etc.), but such mea-
surements are extremely time consuming and special
equipment is needed.

We have also applied the same methods to the
Rayleigh-Bénard convection in isotropic fluids, where
mean-flow effects are of particular importance at low
Prandtl numbers. From a technical point of view our
method is quite convenient because many ingredients of a
Galerkin approach can be incorporated without too
much change of existing codes. We obtain again coupled
amplitude equations including higher-order gradients.
The results of a systematic comparison between order-
parameter equations, the amplitude equations, and the
full rigorous Galerkin analysis will be presented else-
where [86].
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APPENDIX A: SCALING CONVENTIONS

Throughout this paper we have used the following rela-
tions to transform the basic equations into a dimension-
less form:

length x =x’i
2
. ayd
time t=t' 5
k07T
conductivity o=0o'o
dielectric constant e=¢'g,
electric field E=F'E, A1)
viscosity coefficients a;=aja,
elastic constants ki =kjk, 2
k
magnetic field H=H7T 2
d | KoXq
: o
mass density Pm =P — .
ko

Viscosity, elasticity constants, and conductivity are typi-
cally of the order a,=10"3 Ns/m? k,=10"'? N, and
0,=10"8(Qm) ", respectively.

After scaling one can identify two characteristic quan-
tities

R d’eEf  gV?
kom? kom?

(A2)
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aod 20' 0

Qo (A3)

koﬂzso

R serves as the main control parameter. Q is a measure
for the ratio of director and charge relaxation times. The
larger Q is, the better an approximation of the temporal
behavior with only one Fourier mode it will be. For a
J

—Q(0,V*+0,3%2)¢p=(g,V*+¢€,32)3,6—¢,0,(Exd.n,) ,
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much more detailed discussion we refer to [11], where we
borrowed also the standard material parameter set
(MBBA I in Appendix D of [11]).

APPENDIX B: LINEAR OPERATOR

The linear operator .£ (13) (without flexoelectric effect)
in dimensionless form reads as follows:

(B1)

Re,Epd,¢—(Re,Ef+k;302 +kypdl+ky 32 —Hl)n, +(ky—k;;)3,3,n,
+§ax[(a3—a2)V2+(a5—as)(Az—af)]f+%(aé—a5+a3—a2)8yazg=(a2—a3)a,n2 , (B2)
— (kg —k11)3,3,n, + (k3302 + k02 +kpndl—H2)n, +(as—ag)d,d,0,f

+%[(a2_a3)A2+(a6_a5)(ai —35)]g= —(a2—a3)a,n

(B3)

y ’

REoA,(g,V?*+¢,32)p—Re,E}d, Apn, +[a,9t32 + Las—a,)di VA, + La, VA, + Ha; + )03 92 V2] f
+%8x8yaz[2a16§ +(a;+ag) Vg =(a,A,—a302)3,9,n, —(a,+a;3)0,0,8,9,n, +p,, V2A0,f ,

(B4)

19,8,3,[20,3% + (a3 +agV21f +[a;033) + Has—ay)di Ay + Has +ae)d, Vi +1a, VA, Jg

E,=cos(wt) denotes the applied voltage and A,=23> +8J2,
is the horizontal Laplacian. The normalization of the
linear eigenvector has been fixed by choosing the leading
expansion coefficient of the velocity potential f (with
respect to time and z dependence) equal to one. Multipli-
cation with the amplitude A [determined from the
order-parameter equation (19) or from the coupled ampli-
tude equation (35) and (36)] yields detailed information
about the physical quantities above threshold.

APPENDIX C:
CALCULATION OF THE MEAN-FLOW PART

In this appendix we describe in some detail how the
nonanalytic behavior is extracted from Egs. (26)-(30) in
Sec. IV (see also [71]). In a first step all variables except f
are eliminated as follows. Equation (26) is solved first by
integration with respect to z and‘the resulting electric po-
tential ¢ is inserted into the other equations. Further-
more we use a more explicit form for the inhomogeneities
Ip,1,, which have been constructed from the inhomo-
geneities of the momentum equation (6) va’Iuy’qu with

the help of the operators §,¢ [see Eq. (9)]. In Fourier
space we have [the (s,z) dependence of the I”,- is

suppressed in the following]
I, =isy1vx —ist,,y ,
Ip=is,d,I, +is,d,1, —(si+s),

and Eq. (29) after insertion of (30)

=—a3ayaza,n2+(a28i—a3af )9,n, +p, 20,8 . (B5)

!
—[asi+(a+b)s)dlg =is, I, —is. I, +bs,s,0; (C2)
appears in the form
ala+b )(s3+sy2)a§f=iasxaz A, +ila+b)s,0,4,
+[asi+(a+b)s}]A; . (C3)

For convenience, we use the abbreviations
ay a3 taog
2 ’ = 2 b

and in a more compact notation 4, and 4, instead of I,

a=

(C4)

and I, , respectively, 4, is a combination of I, , and the
¥y z
contribution of the electric potential ¢ [see Eq. (29)],

A3=I, +1R(s2+s2)e,0*Re(d) . (C5)

For the moment we write Eq. (C3) in a condensed
form:
dtf=F(z), (Ce6)

where F is an abbreviation for the right-hand side of Eq.
(C3) divided by a(a+b)(s?+s}). The solution of (C6),
which satisfies the boundary conditions (10), is given by

f(z)= fozdz’fjﬂ/zdz” foz”dz'”fwz:;/zdz"”F(z”")

(C7
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with the integration constant

1= [ [ e [Tae [T

The result for f is inserted into Eq. (C2), which can be
written as

g =Gl(z) . (C9)

The quantity G(z) is the right-hand side of Eq. (C2) di-
vided by [as}+(a+b)s}]. Equation (C9) is solved (ob-
serving the boundary conditions) by

g(Z): fjw/z

It is obvious that g(z) is nonanalytic because of the
quadratic form in s,,s, on the left-hand side of Eq. (C2)
and that applies analogously to f by inspection of Eq.

(C3). The nonanalytic part (or, equivalently, the mean-
J

IIIIF( Illl) (Cs)

dz' [7dz"G(z") . (C10)

_ 12as? ,
Ux 173(a+b)[as3+(a+b)sy2] z 4

(1S2

+(a+b)[as3+<a+b) f 5 fd"f

12s,s, )
wlas2+(a+b )syz]

dz' [Tdz [7 dg

4 sty fz
las}+(a+b)s?] ~ ~nr2

/2 z z' z"
f dzf dz’f dz”f
0 —7/2 0 —7/2

dg 4,
[ e [ [

S z
y————
£ as}+(a+b)s} f~ﬂ/2
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flow part) of the horizontal velocity v, is obtained by the
application of the operators € and § [see Eq. (9)] on the
velocity potentials f and g and disregarding finally con-
tributions which can be written in the form of a power
series in s, and s5,. A corresponding calculation for v,
leads to analogous conclusions. The x component of the
velocity reads

v, =is,0,f +is,g

mi [T a7 ama
i, tis, [T dz' [TazGz")

(C11)

After insertion of F, G, and J and some rearrangement
one gets

d& A,(&)

2
Sy

2+(a+b)S2 f—rr/Z Z,fo dgAl(g)
Y

d& A,(&)

dz'foz'dg A,(E)

(C12)
2) in the layer average A4, and the rest 4, resulting in

A8 43

Ay . (C13)

12isx 1T2 T/2 z z' z"
—_— —_— ’ n d A
m(a+b) z 4 fo dszw/zdz fo dz f~7r/2 §45(6)
s I ar T [T agaye
(a +b) ~w/2 i 2 §45(8) .
The z integrals can be simplified after splitting the A, (i =
. iS 7T2 12 17'/2 z "
Vy = — a+b 1+ z _T ‘; 0 f dZ f d f
1 2 m 12 /2 z ’ z' o0y
+— {1 2= |5 ]f‘mdz J dz" i
_ Syz zZ__ﬂz_ 1_2 ”/Zdzfz dz'fz’dz”A"(z")
as}+(a+b)s} 4 (7370 —7/2 0 !
SxSy 2 772 12 /2 z ’ z' g0t
zt—— | == dz dz dz" A% (z")
as2+(a +b)s} 4 ] Yo f~1r/2 fo 2
1|, Sf , .S,
+5 |z T 2 2 41T T o 2
2 asg+(a+b)s, asy —(a+b)s,

The first two terms contain contributions to v, regular
for s—0, while the remaining ones correspond to the
mean-flow part, characterized by a nonunique limit for
vanishing s. Note in addition that the third and fourth
summands stem from the integration constant J in the f

equation and cannot be obtained by simply averaging the
original inhomogeneity in the g equation as sometimes in-
dicated [29]. Using the identity -

fv/zd f_ﬁ/zdzf dz” -

, (C14)
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the singular part of (C13) can be written in a more com-
pact form:

2__113

4

lSy

as?—(a+b)s}

X foﬁ/zdz f_zﬂ/zdz’fofdz”lg(z") .

The calculation for v, would be similar: One gets the
same expression, where only the prefactor —is, has to be
substituted by is, in front of integral in (C15). We con-
clude that the nonanalytic components of the horizontal
velocity field can be deduced from the nonanalytic veloci-
ty potential g(s,z)=1B(s)(z2—n?/4) with B given in
Sec. IV A [Eq. (31)], transformed into position space, in
accordance with

—12

77_3

S —
Uy =

(C15)

v=0,g,, vj=—0, . (C16)

APPENDIX D:
COEFFICIENTS OF THE AMPLITUDE EQUATIONS

In this appendix we give some examples for coefficients
of the coupled amplitude equations (35) and (36) for
different values of the anisotropy o, of the conductivity,

F2

_e(1+e,Q+e,Q+e, Q% +ecQY)—r Q% +r;03+r;0*
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the frequency w, and magnetic fields H,. Otherwise the
calculations rely on the standard material parameters for
MBBA (MBBA I in Appendix D of [11]). The dimen-
sionless units of Appendix A have been used throughout
with exception of w, which is measured in the conven-
tional physical units (time scale determined by the charge
relaxation time T,=gye,/0o0,). Note that the
coefficients b, and b, (36) are given by b, =0.5a, and
b,=0.5(a;+a;+ag) with the numerical values b; =41.3
and b, =23.95 for our standard parameter set.

Table I contains linear and nonlinear coefficients for
zero magnetic field H, =0; the corresponding ones for
H,=1 can be found in Table II. The numerical values
have been included more for completeness, and by inspec-
tion no significant changes in the dependence on the ma-
terial parameters can be observed. A complicated inter-
play of the coefficients determines the stability boun-
daries as shown, e.g., in Figs. 1-5 according to Egs. (39)
and (45). Additional coefficient sets for other material
parameters are available upon request from the authors.

APPENDIX E: STABILITY ANALYSIS
OF THE AMPLITUDE EQUATIONS

Using Eq. (35) a roll solution of the form A,=Fe'®*
can easily be obtained with the amplitude F:

1—(a;—a,)Q—(a;+a,+as—ag)Q?

The growth rate o is calculated using the ansatz (37) for
the perturbation 8 4. Because we are interested in long-
wavelength instabilities, it is sufficient to keep only the
terms quadratic with respect to s, and s, in 0. After
some calculation one gets

1 x 1
o=—(L™+N*—N )sf+—
B, s;

T b,s]f-l-bzsy2

(L»+N¥ —N¥)s?

B, (sxsy)2

Tbls)f—l-bzsy2

(L*+Ni+N3)L*+Ni—N3)
- 2TN? %

By(L*+N%—N%)
B TN?

(se8,)?

(E2)
bls)? +b2Sy2

with the abbreviations
T= 1 _TIQ ’

L*=¢(e;+2e,0)—2r,Q,
L*>=¢e(e,+3e,Q)—r,+3r;0 ,
L7=ele;tesQ)—r,+r,Q,
N9=—F[1—(a;—a,)Q],

*=Fal+(2a;+2as—as)Q],
1 [ 3 s—ag)Q] E3)

N3=Fa,—(2a,—a¢)Q], N*=F%,,
NY =F*a;+(a; +a;5—a7)Q],
N’Z"‘:F2(14, N¥y=F2[as—(au—axs)Q] ’
B, =(s;+5,Q)F*(q,—q3) ,
B,=—(s;+5,0)F?q,—s,F*Q(gs—q¢)
By=(s,+5,0)F*[q,—(2g9:;—¢q,)Q] .

From the notation the origin of the coefficients can be
read off: the L’s come from the linear operator, the N’s
come from the cubic terms in Eq. (35), and the B’s belong
to the mean-flow equation (36). The superscripts x,y cor-
respond to the derivatives with respect to x,y. Only
terms up to OQ) have been kept. The destabilization line
at Q=0 and its slope with respect to Q is obtained from
o =0 (E2). The growth rate is maximal for s, =0, corre-
sponding to a pure zigzag destabilization. The destabili-
zation type can be checked with the help of the criteria
given in Egs. (42) and (43). The needed coefficients &, b,
G, d, and v can be expressed in terms of the quantities
defined in (E3)

Bz Bl B3(Lx+N'f_N;)
a=2-—">-2—+ 5 ,
bl bl blNZ
___ B, By(L*+Nj—N3)
b, b,N3 ’
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TABLE I. (a) Linear and (b) nonlinear coefficients of Egs.
(35) and (36) for two different electrical anisotropies o, (0.7, 0.8)
and frequencies w7, (0.5, 1.0) (zero magnetic field).

TABLE II. (a) Linear and (b) nonlinear coefficients of Egs.
(35) and (36) for two different electrical anisotropies o, (0.7, 0.8)
and frequencies wt, (0.5, 1.0) (nonzero magnetic field H, =1 in
reduced units).

H,=0
,=0.7 0,=0.8 H,=1
wT4=0.5 oTg=1.0 wT5=0.5 wTy=1.0 0,=0.7 0,=0.8
075=0.5 wTo=1.0 w075=0.5 oT,=1.0
(a) (@)
T, 2.30 1.80 2.45 1.96 T, 2.15 1.69 2.28 1.84
Tl —2.04 —1.99 —2.05 —2.00 Tl —2.04 —1.99 —2.05 —2.00
T —1.17 —1.10 —1.19 —1.12 7 —1.21 —1.13 —1.22 —1.14
T3 —0.633 —0.497 —0.667 —0.558 T3 —0.064 —0.492 —0.656 —0.531
e, 3.67 3.52 3.70 3.57 e 3.62 3.48 3.65 3.53
e, 4.54 4.13 4.63 4.26 e, 4.46 4.06 4.55 4.19
e, 0.859 0.600 0.918 0.667 e; 0.838 0.588 0.896 0.654
e, 2.19 1.84 2.28 1.95 ey 2.15 1.81 2.24 1.92
es 1.81 1.24 1.95 1.39 es 1.76 1.20 1.89 1.35
e 0.379 0.289 0.405 0.317 g 0.363 0.277 0.387 0.304
e; 0.703 0.453 0.773 0.527 ey 0.694 0.448 0.763 0.519
es 0.109 0.012 0.135 0.031 eg 0.105 0.012 0.131 0.031
" 0.981 0.874 1.01 0.906 r 0.938 0.839 0.962 0.869
r, 0.052 0.134 0.037 0.120 7, 0.051 0.131 0.035 0.117
73 —2.40 —2.04 —2.50 —2.15 r3 —2.29 —1.94 —2.37 —2.05
rs —0.364 —0.491 —0.337 —0.474 s —0.345 —0.471 —0.319 —0.453
rs —1.82 —1.42 —1.92 —1.54 7s —1.74 —1.36 —1.84 —1.48
re —1.26 —1.01 —1.32 —1.08 76 —1.18 —0.958 —1.24 —1.03
r —0.110 —0.124 —0.106 —0.128 s —0.104 —0.118 —0.100 —0.122
5 3.04 2.63 3.15 2.76 8 2.88 2.51 2.98 2.63
55 8.25 6.87 8.60 7.28 55 7.80 6.54 8.11 6.92
S5 —2.26 —1.75 —2.41 —1.91 3 —2.11 —1.65 —2.24 —1.79
54 4.70 4.19 4.82 4.36 S4 4.47 4.01 4.58 4.16
- (b) - (b)
V Agn 0.0558 0.0519 0.0566 0.0521 V A 0.0574 0.0532 0.0583 0.0534
a, —6.31 —6.22 —6.37 —6.31 a, —6.27 —6.19 —6.33 —6.28
a, 0.414 0.278 0.438 0.290 a, 0.422 0.283 0.447 0.296
a, —8.03 —7.98 —8.12 —8.15 as —7.96 —7.92 —8.05 —8.08
a, 0.056 0.111 0.040 0.100 a, 0.057 0.113 0.040 0.103
as —9.28 —9.11 —9.39 —9.31 as —9.21 —9.04 —9.32 —9.24
ag —0.707 —1.31 —0.582 —1.27 ag —0.597 —1.22 —0.462 —1.17
a, —1.78 —1.95 —1.79 —1.94 a, —171 —1.82 —1.73 —1.83
ag —0.424 0.004 —0.511 —0.111 ag —0.453 —0.092 —0.528 —0.190
a, —1.13 —1.83 —1.03 —1.70 ag —1.08 —1.65 —0.994 —1.55
a —1.02 —0.310 —1.17 —0.522 ap —1.03 —0.461 —1.15 —0.639
a, —3.86 —3.88 —3.92 —3.97 a —3.68 —3.66 —3.74 —3.76
ap, 0.425 1.03 0.308 0.884 ap 0.294 0.801 0.194 0.677
ag 0.310 —3.34 1.00 —2.71 ag —0.451 —3.43 0.111 —2.94
a., —5.70 —2.51 —6.40 —3.34 ay —5.25 —2.67 —5.84 —3.36
as —0.138 2.20 —0.563 1.73 as 0.082 1.97 —0.258 1.60
as —3.72 —4.10 —3.74 —4.15 a6 —3.77 —3.97 —3.81 —4.06
a; 0.681 0.680 0.728 0.706 apy 0.715 0.672 0.768 0.705
ag —4.06 —1.17 —4.71 —1.91 a —4.01 —1.56 —4.58 —2.20
a —5.67 —2.52 —6.37 —3.32 ap —5.27 —2.69 —5.85 —3.36
ay 2.68 2.57 2.76 2.61 @y 2.25 2.15 2.31 2.19
a —21.2 —22.3 —19.7 —20.4 q, —224 —233 —20.9 —21.3
q> 46.7 46.0 44.4 43.1 9 49.0 47.8 46.7 44.8
qs 15.6 14.8 14.9 14.0 q3 16.2 15.3 15.6 14.4
qa —3.79 —3.96 —4.14 —4.20 'n —4.05 —4.19 —4.45 —4.46
qs —11.1 —9.71 —10.8 —9.49 qs —11.5 —9.99 —11.2 —9.77
qs —15.5 —14.5 —16.2 —15.1 9 —16.3 —15.2 —17.1 —15.8
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(L*+N¥+N3) L*+N{—N3)
c=LY»+NY—N¥+

2N ’
(E4)
E:LXX+NTX’NJ2‘X—— (L*+N7+N3)L*+N7—N3) ’
2N
b,—b,
u=—bl___

The magnitude of v serves as a measure of the anisotropy
of the linear operator in the mean-flow equations. Its
value is v =(a3;+ag) /a,~ —0.42 in MBBA.

Finally we give the expression for the zigzag destabili-
zation line €,,(Q), which is obtained from Eq. (E2) for
s, =0,

r,+Q(r,e;—ry)
hO+Q(h1—h2/b,) ’

€,(0)= (ES)
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where the following abbreviations have been introduced:

hO=e3+a;—az—2s,q9,/b, ,

h1=2a,e;—a;;+a,s—a;3—a,a,+a,, +aza,
—aga;ta,teze, testasa, —2aga,, (E6)

hy=2s,q5—2s,95+4s1q,4e,
+2559,+2s5194a,—25,9,a, .

The quantity b, was defined as b, =0.5(a,+a;+ag) [see
Eq. (35) and Appendix D]. The complicated interplay of
the higher-order derivative terms in the coupled ampli-
tude equations (35) and (36) is evident and it seems
unjustified to disregard any of them. Note that further
coefficients would come in if the upper destabilization
line were of the skew-varicose type, a possibility which is
included in Egs. (35) and (36).
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FIG. 10. Snapshot of a 2D simulation pattern (see text) for
€=0.1 (the parameters are the same as in Fig. 1) starting from
random initial conditions.






FIG. 12. Snapshot of a 2D simulation pattern for e=0.2 (the
parameter is the same as in Fig. 1).




